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Abstract. In this paper, we present a study on the parallelization of the shortest path graph kernel from
machine learning theory. We first present a fast sequential implementation of the graph kernel which we refer
as Fast Computation of Shortest Path Kernel (FCSP). Then we explore two different parallelization schemes
on the CPU and four different implementations on the GPU. After analyzing the advantages of each we
propose a hybrid version which, for different pairs of graphs, dynamically chooses the best implementation
from multicore execution and GPU execution. Finally, we apply our implementations to several datasets
that are composed of graphs from different domains. We first evaluate our implementations on a set of
synthetic datasets, then, we evaluate our implementations on a set of four real-world graph datasets. The
results show that the sequential FCSP algorithm running on CPU is able to achieve a maximum 76x
speedup over a naive sequential implementation of the shortest path graph kernel algorithm running on
the same CPU. The results also show that our GPU implementation of FCSP offers a maximum 18x
speedup over the sequential FCSP. Our GPU implementation also achieves a maximum 2x over a parallel
CPU implementation of FCSP.

1 Introduction

Many of the most advanced technologies, e.g. speech recognition in mobile devices, involve rigorous analysis of
historical data in the pursuit for patterns and relationships. The discipline of machine learning plays a central
role for such data analysis, however, most of their algorithms still require substantial computational resources.
Furthermore, in several real world applications, data occur naturally as complex discrete structures demanding
even more computational power.

Examples of such structures include: social networks where social actors are connected to each other by
interactions [1]; biomolecules, DNA/RNA sequences, proteins, and chemical compounds that are important
bodies in the fields of chemoinformatics [2]; and bioinformatics [3]. These data observations can typically be
expressed by graphs, which are powerful formalisms that naturally encode the structural relationships present
in the data and allow for computational processing.

In fact, one increasingly popular approach for learning patterns from databases of graphs is the design of
kernels for graphs. A kernel function in machine learning can be roughly understood as a similarity function
between a pair of input graphs. Powerful learning algorithms known as kernel methods, such as the Support
Vector Machine [4], interact with data observations exclusively through kernel functions and they have been
extensively used across several scientific applications [4–7].

An attractive kernel function for graphs is based on counting similar shortest paths in a pair of input
graphs [8]. In contrast to most existing kernels for graphs, kernels based on shortest paths can deal with labeled
graphs, where the labels are not restricted to a discrete alphabet, that is, one can label nodes and/or edges
with continuous values or even more complex compositions. Graph kernels have proven [9] efficient with small
databases of graphs, however, because of the inherent complexity of graphs in real world scenarios and the need
to scale to larger graphs, graph kernels can have high computational costs.

In this paper, we focus on accelerating graph kernels based on shortest paths, as originally proposed by
Borgwardt et al. [8]. Research has shown that these kernels are highly competitive in terms of accuracy and
running time, when compared with others [9]. To the best of our knowledge, no other work has addressed the
parallelization of shortest path graph kernels. Note that, the sequential version of this algorithm runs in O(n4),
which makes it only appropriate for instances of not very large graphs.

For a given dataset D = {g1, g2, . . . , gn} of graphs, our experiments focus on the calculation of the corre-
sponding kernel matrix Mn×n, a symmetric matrix where every element M(i, j) = SPGK(gi, gj) refers to the
shortest path graph kernel function applied to a pair of input graphs gi and gj .



Our proposed method splits the original shortest path kernel into two parts and makes the calculation much
faster. We call it the Fast Computation of Shortest Path Kernel, referred as FCSP. We explored two different
parallelization schemes of FCSP on the CPU using OpenMP. One focuses on the parallelization of FCSP on a
single pair of graphs while the other focuses on the parallelization of calculating the entire kernel matrix. Next,
we split the FCSP into three different GPU kernels using OpenCL which will calculate respectively, the pairwise
similarities between the vertices of the input graphs, the edges from the two input graphs, and the aggregation of
those similarities into the final value for FCSP on the GPU. We implement four different GPU parallelizations.
The first uses a 1D scheme for domain decomposition, the second uses a 2D scheme for domain decomposition.
The third and fourth overlap communication and computation for the first and the second method. We observed
that the OpenMP implementations work better when the input graphs are small, while the GPU implementations
are better for larger graphs. This information suggests a hybrid implementation combining CPU parallelization
with the best GPU parallelization. The hybrid scheme is based on a graph size threshold. Graphs smaller than
the threshold size are assigned the CPU parallelization. Larger graphs are assigned the GPU parallelization.

To measure the performance of our different implementations, we perform two separate experiments, where
we apply our different accelerated codes to several datasets. In the first experiment, we create 9 synthetic
datasets. Graphs in the same dataset have exactly the same number of nodes, and they are all fully connected.
We also created one additional dataset containing graphs with different sizes to test the performance of the
hybrid implementation. In the second experiment, we measured the speedups in the kernel matrix calculation for
different samples of graphs from real-world scientific datasets; specifically four datasets from the bioinformatics
domain are used. As expected, the hybrid implementation achieved the best performance because size of graphs
can vary from less than ten nodes to over one hundred nodes in these datasets.

This paper is organized as follows. In Section 2, we present the shortest path graph kernel. In Section 3, we
propose a fast sequential computation of the Shortest Path Graph Kernel. In Section 4, we introduce two different
CPU parallelizations of the FCSP algorithm. In section 5, we describe our different GPU implementations and
the hybrid method. Section 6 presents our experimentation and the analysis of the results. In Section 7, we
present an overview of related work. Finally in Section 8, we discuss our conclusions and future work.

2 Shortest Path Graph Kernel

Graph kernels based on shortest paths were proposed by Borgwardt and Kriegel [8]. Roughly speaking, this
kernel counts the number of shortest paths of the same length having similar start and end vertex labels in two
input graphs. One of the motivations for using this kernel is that it avoids the problem of “tottering” found in
graph kernels that use random walks [10]. Tottering is the act of visiting the same nodes multiple times thereby
artificially creating high similarities between the input graphs. In shortest path kernels, vertices are not repeated
in paths, thus, tottering is avoided.

In practice, a graph kernel based on shortest paths will require to determine all shortest distances in a graph,
a problem that is solvable in polynomial time. For example, the Floyd-Warshall algorithm [11] calculates the
shortest distances for all pairs of nodes in O(n3) time, where n denotes the number of vertices. This algorithm
allows graphs with negative edge labels, but not containing any negative cycles, which happen when all edge
labels in the cycle sum to a negative value. In order to define a kernel that counts shortest paths of similar
distances, the original graphs must be transformed into shortest path graphs. This step is a preprocessing
requirement before calculating the shortest path graph kernel.

Given a graph G = 〈V,E〉, a shortest path graph is a graph Gsp = 〈V ′, E′〉, where V ′ = V and E′ =
{e′1, . . . , e′m} such that e′i = (u′i, v

′
i) if the corresponding vertices ui and vi are connected by a path in G. The

edges in the shortest path graph are labeled with the shortest distance between the two nodes in the original
graph.

A shortest path graph kernel for two shortest path graphs G = 〈V,E〉 and G′ = 〈V ′, E′〉 is defined as:

ksp(G,G′) =
∑
e∈E

∑
e′∈E′

kwalk(e, e′) (1)

where kwalk is a positive definite kernel for comparing two edge walks of length 1.

The edge walk kernel kwalk is the product of kernels on nodes and edges along the walk. Since the length
of the walk is 1, kwalk can be calculated in terms of the start vertex, the end vertex, and the edge connecting



both. Let e be the edge connecting vertices u and v, and e′ be the edge connecting nodes u′ and v′. The edge
walk kernel is defined as follows:

kwalk(e, e′) = knode(u, u
′) · kedge(e, e′) · knode(v, v′) (2)

where knode is a valid kernel function for comparing two vertices, and kedge is a valid kernel function for comparing
two edges. The positive definiteness of the kernel in Eq. 1 follows from its definition as a R-convolution kernel [12].
Pseudo-code for a naive implementation of the Shortest Path Graph Kernel is presented in Alg. 1. Given two
input graphs g1 and g2, line 2-7 loops over the shortest path matrices to find all pairs of paths. Line 8 calculates
the kedge and line 10-11 calculates knode. Line 12 calculates kwalk and sum it up.

This kernel is attractive because it retains expressivity while avoiding tottering. Moreover, it can be applied
to all graphs on which Floyd-Warshall can be performed, as well as the fact that it allows for continuous labels in
vertices and edges. The runtime complexity of this kernel is O(n4), because the Floyd-Warshall transformation
can be done in O(n3) and the kernel calculation requires a pairwise comparison on the number of edges of the
shortest path graphs. The latter takes O(n2 ∗n2), because in the worst case the shortest path graph is complete,

having n vertices and n(n−1)
2 edges.

Algorithm 1 Shortest Path Graph Kernel Algorithm
1: K ← 0
2: for i, j = 0→ n node[g1] do
3: w1← sp mat[g1][i][j]
4: if i 6= j AND w1 6= INF then
5: for m,n = 0→ n node[g2] do
6: w2← sp mat[g2][m][n]
7: if m 6= n AND w2 6= INF then
8: k edge← EdgeKernel(w1, w2)
9: if k edge > 0 then

10: k node1← NodeKernel(g1, g2, i,m)
11: k node2← NodeKernel(g1, g2, j, n)
12: K+ = k node1 ∗ k edge ∗ k node2
13: end if
14: end if
15: end for
16: end if
17: end for
18: return K

3 Fast Computation of the Shortest Path Graph Kernel

A naive implementation of the Shortest Path Graph Kernel (Alg. 1) has three disadvantages that may slow
down its performance. The first is the number of control flow operations. Four for loops and two if statements
definitely slow down the program performance whether sequential or parallelized. The second defect is potential
redundant computation of knode. Let us consider two graphs as shown in Fig. 1(a). When we compare walk
D− > E with A− > B, we need to compute knode on (D,A) and (E,B). When we compare walk D− > F
with A− > B, knode on (D,A) and (F,B) have to be calculated. So there is a redundant calculation of knode on
(D,A) which is a waste of computation resource and time. The third drawback is the random memory access
pattern in Alg. 1. Sequential memory access is preferred on the CPU, and this is even more true for SIMD
architectures like the GPU. The sequential and random read bandwidths on a Nehalem CPU and Fermi GPU
have been measured before [13], results as shown in Table 1. As you can see, there is a 9x difference in bandwidth
on the CPU, and 28x difference on the GPU.

To address the issues of Alg. 1 we propose a different way to calculate the shortest path graph kernel. We
refer to this as the Fast Computation of Shortest Path Graph Kernel (FCSP ). In our method, the calculation
of the shortest path graph kernel is divided into two main components. First, we calculate all possible instances
of knode into a vertex kernel matrix. Second, we calculate all the required values for kwalk. Note that the kernel



Table 1. Sequential and Random Memory Read Bandwidth on CPU and GPU

Platform Sequential Read Random Read

Nehalem CPU 8.6 GB/s 0.9 GB/s
Fermi GPU 76.8 GB/s 2.7 GB/s

functions knode and kedge used to calculate the similarity between a pair of nodes and a pair of edges, can be
different from application to application. In our experiments, we use the Gaussian kernel and the Brownian
Bridge kernel which are positive semidefinite [14].

For the first component, named V ertexKernel, we proceed as follows. Assuming that the order of g1 is m
and the order of g2 is n, we create a matrix Vm×n for storing the knode values, where every entry is the value of
knode(u, u

′) for u being a node of g1 and u′ being a node of g2. By using this scheme, the redundant computation
of knode is eliminated.

The second component, named WalkKernel, is responsible for calculating kwalk, and takes advantage of a
new representation of the shortest path adjacency matrix. The new representation is composed of three equally-
sized arrays. The length of these arrays is the number of edges in the corresponding matrix. The three arrays
store respectively: the weight of the edge, the index of the starting vertex, and the index of the ending vertex.
This representation is inspired by the formats of storing a sparse matrix on GPUs [15] which can solve the low
memory utilization problem for sparse matrices access. By applying this transformation, the two if statements
in Alg. 1 can be removed and four for loops are reduced to two.

The pseudo-code of our new method is presented in Alg. 2. Given input graphs g1 and g2, function
V ertex Kernel calculates all possible instances of knode sequentially and stores them in a matrix V for later
access. Function Walk Kernel takes advantage of the three 1D arrays converted from shortest path matrix,
satisfies more sequential memory access and less branch divergence. It calculates all kwalk and sums them up as
the final similarity between two input graphs.

Algorithm 2 Fast Computation of Shortest Path graph kernel

1: function vertex kernel
2: for i = 0→ n node[g1] do
3: for j = 0→ n node[g2] do
4: V [i][j]← NodeKernel(g1, g2, i, j)
5: end for
6: end for
7: end function
8:
9: function walk kernel

10: K ← 0
11: for i = 0→ n node[g1] do
12: x1← edge x1 g1[i]
13: y1← edge y1 g1[i]
14: w1← edge w1 g1[i]
15: for j = 0→ n node[g2] do
16: x2← edge x2 g2[j]
17: y2← edge y2 g2[j]
18: w2← edge w2 g2[j]
19: k edge← EdgeKernel(w1, w2)
20: if k edge > 0 then
21: k node1← V [x1][x2]
22: k node2← V [y1][y2]
23: K+ = k node1 ∗ k edge ∗ k node2
24: end if
25: end for
26: end for
27: return K
28: end function



4 FCSP on Multi-Core CPU

In our experiments we pursue the calculation of a kernel matrix from a given input dataset of n graphs. A kernel
matrix is a symmetric matrix where every entry M [i, j] for i, j ≤ n is the corresponding shortest path graph
kernel between graphs gi and gj . Here we present two different schemes of FCSP parallelization on multicore
CPUs. Both schemes are implemented using OpenMP.

In the first scheme referred as OpenMP In, we make the FCSP computation on a single pair of graphs
running in parallel. For the first part of FCSP , which is V ertex Kernel, we create a shared 2D matrix for all
the OpenMP threads. Then we parallelize the outside loop, which is line 2 in the V ertexKernel as shown in
Alg. 2, using the dynamic parallel for pragma. In the Walk Kernel, we create an array with size equal to the
number of OpenMP threads. This array stores the summed kwalk from all OpenMP threads. We use the same
dynamic parallel for pragma to parallelize line 11 of Alg. 2 because dynamic parallel is observed faster than the
static parallel scheme.

The second scheme is parallelization of the kernel matrix calculation which is referred as OpenMP Out. In
this scheme, we create the same number of threads as the number of CPU cores available. Each thread resides
on one core. To calculate the symmetric kernel matrix for a set of input graphs, the top half triangle of the
matrix is transformed to a 1D array. Each OpenMP thread takes one element in the 1D array in order, applies
the FCSP , fills in the result, and then goes to the next iteration until all elements are computed.

5 FCSP on GPU

The GPU is a massively parallel co-processor present in desktops and laptops. The most powerful GPUs can
perform more FLOPS and have more memory bandwidth than the most powerful CPUs [16]. Moreover, the
development of programming environments, like CUDA and OpenCL, allows programmers to run multiple
threads in parallel using the power of the GPU for general-purpose applications.

The CUDA and OpenCL models use an SPMD model where a program known as a kernel represents a single
scalar execution entity. In CUDA terminology, which we will use throughout for simplicity, this is known as a
thread. These CUDA threads are organized for execution into 1D, 2D or 3D grid of structures known as thread
blocks which perform local computation and which are co-located on the same execution unit of the GPU.
Thread blocks have access to a shared on-chip shared memory and can synchronize their constituent threads
with each other. Threads are further executed in 16-, 32- or 64- element batches called warps where each thread
is a single SIMD lane and a warp is thus analogous to a x86 thread executing an SSE or AVX instruction. This
mapping of neighboring threads to a single SIMD vector leads to efficiency losses, known as thread divergences,
when threads are mapped to the same warp follow control flow paths.

We present our different GPU parallelizations of the FCSP . We first introduce two different domain decom-
position techniques for FCSP parallelization. Then we reduce the total running time of these two implementa-
tions by overlapping communication and computation. After that, we propose a hybrid method that combines
multicore CPU and GPU parallelization.

5.1 Two Domain Decompositions in GPU Parallelization

FCSP is naturally applicable for parallelization. In this implementation, branches are removed, no load bal-
ancing issue exists between GPU threads, and the coalesced memory access is satisfied. We are therefore able
to achieve significant speedups with this approach.

In our GPU implementation, the FCSP is divided into three GPU kernels. The first one is V ertex Kernel.
It calculates all possible instances of knode and stores them in a matrix for later access. The second kernel is
Walk Kernel which calculates all the required values for kwalk and stores them in a matrix or array. The last
component is Reduction Kernel which sums up all kwalk values into a small array. The small array is copied
to CPU memory and summed up as the final similarity.

For the first component, named V ertex Kernel, we proceed as follows. Assuming that g1 has m vertices
and g2 contains n, we allocate a buffer Vm×n on the GPU memory for storing the knode value. A GPU thread
grid is created, where each thread calculates an entry of V . As we remove the divergence, all threads in this
component are running in parallel.

The second component, named Walk Kernel, is responsible for calculating kwalk. Given two input graphs,
suppose the number of paths in g1 is a and g2 has b paths. We assume g1 has more paths than g2 without



loss of generality. For the graph with n nodes, the paths can vary from 0 to n2. So the domain decomposition
for GPU threads can be tricky. In our implementation, we tried two different methods. The first method is 1D
decomposition in which we assign a GPU thread to one path in g1. This thread will loop through all the b paths
in g2, calculate the corresponding kwalk value and sum them up. An array of a elements will be returned at the
end. The second scheme is 2D decomposition. In this method we assign one GPU thread to one pair of paths.
So each thread will calculate kwalk between two paths. A matrix of a × b will be returned. The calculation of
kwalk requires knode, that has already been calculated and cached.

The third GPU kernel is Reduction Kernel. If we used the 1D domain decomposition scheme in WalkKernel,
a reduction is performed on a elements. Otherwise, the reduction is performed on a×b elements. After reduction,
a small result array is copied back to the CPU. Finally, the similarity between the graphs is calculated by adding
up all the values in the array.

The biggest advantage of parallelizing FCSP on GPU is efficiency. There is no execution divergence between
threads thanks to the shortest path matrix conversion in V ertex Kernel and Walk Kernel. The sequential
coalesced memory access is satisfied in all three kernels.
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Fig. 1. Example for applying Shortest Path Graph Kernel using Advanced. Figure 1(a) shows the input graphs and the
corresponding shortest path adjacent matrix. Figure 1(b) depicts the V ertex Kernel and each GPU thread’s assignment.
Figure 1(c) shows the Walk Kernel with 1D domain decomposition and each GPU thread’s calculations. Figure 1(d)
shows the Walk Kernel with 2D domain decomposition and each GPU thread’s calculations.

To make it easy to understand, we show a simple example in Figure 1. Figure 1(a) shows the two input graphs
and the shortest path adjacency matrix. Figure 1(b) demonstrates how V ertex Kernel calculates knode(u, u

′)
for the inputs. Since there are three vertices in each graph, we create a thread grid of size 3 × 3, as shown in
the figure. Each thread in the grid is responsible for calculating one knode(u, u

′). Results are stored in a matrix
and can be cached for later access. Figure 1(c) shows the Walk Kernel with 1D decomposition. Since there are
three edges in the first input graph, we create three GPU threads. Each thread loops through the two edges in
the other input graph. The knode values for its vertices are pre-calculated and cached. This allows the threads
to finish the calculation of kwalk extremely fast. Figure 1(d) shows the Walk Kernel with 2D decomposition.
Since there are three paths in one graph and two paths in the other one, six GPU threads are created. Each
thread calculates the kwalk between one pair of paths.

Before the GPU kernel execution, the two input graphs have to be copied to the GPU memory. So if there
are n comparisons, n memory transfers between the CPU and the GPU are needed. This will result in a huge
overhead. To avoid the unnecessary and duplicated memory transfers, we can simply copy all the graph data into
GPU memory. Then at each kernel execution, the GPU thread can fetch needed data according to its targeting
graph offset.

5.2 Overlapping Communication with Computation

In our GPU implementation, the last kernel is the Reduction Kernel. A small array is copied to the CPU and
summed up for calculating the final similarity. This memory copy from GPU to CPU and computation on CPU



may not take too much time. However, given n input graphs, the GPU method needs to be called n2 times. As a
result, there may be considerable time spent on memory transfers and CPU computation. Our experiments show
that the portion of total time spent on the reduction memory transfer can vary from 6% to 50%. Fortunately, this
part can be hidden by overlapping it with GPU computation. Here is how it works. When the reduction kernel
completes, we initiate a non-blocking memory transfer then assign another pair of graphs to the V ertex Kernel.
As the memory transfer is asynchronous it can be overlapped with the following V ertex Kernel execution. When
V ertex Kernel completes we initiate a non-blocking execution of Walk Kernel and the CPU accumulates the
result array to obtain the similarity result while the GPU is executing. Our experiments show this scheme can
hide most of the time spending on memory transfer other than the function call overhead.

5.3 Hybrid Implementation – Combining CPU and GPU

From our experiments, we observed that the implementation with the best performance may be different in
different datasets. When the graphs are really small, the CPU implementation beats all the other GPU imple-
mentations. The GPU with 2D decomposition beats the GPU with 1D decomposition when graphs are small,
but it cannot beat the OpenMP implementations. However, when the graphs get bigger, the GPU with 1D
decomposition performs the best. The experiments show that the overlapped implementations always perform
better than the ones without overlapping. So we think it should be a good idea to combine CPU and GPU
implementation together. We hypothesize that many real world datasets have graphs of a variety of different
sizes. So in our Hyrbrid implementation, we set one threshold T about graph sizes. When the number of shortest
paths in both input graphs are smaller than T , we use OpenMP In to calculate the similarity. Otherwise, the
GPU 1D overlap is used.

6 Experiments

All the experiments were conducted on a GPU cluster where each node has a NVIDIA C2050 GPU. This GPU
is based on the GF100 (Fermi) architecture. It contains 14 multiprocessors with 32 processors each, for a total
of 448 parallel processors. Each multiprocessor contains 32K registers and 64KB, which are split between shared
memory and L1 cache. Programmers can allocate 16KB for shared memory and 48KB for L1 cache or 48KB for
shared memory and 16KB for L1 cache. In addition to the GPUs, each node contains two Intel 5530 Quad core
Nehalem CPUs clocked at 2.4 GHz with 8MB cache. For our OpenMP implementation, we used sixteen CPU
threads.

We tested our GPU accelerated versions of the shortest path graph kernel using two datasets. The first
dataset is synthetic. The second dataset is a scientific dataset containing labeled graphs using discrete values.
For performance comparisons, we do take memory copies and all the other overhead into consideration, i.e., the
total running time is used.

6.1 Results on Synthetic Datasets

To test the performance of all our implementations, we created some synthetic datasets. Our OpenMP imple-
mentations perform well on datasets with small graphs, while the GPU implementations perform better on
datasets with larger graphs.

Dataset First, we created nine different datasets. We call these homogeneous datasets because each dataset
contains graphs of same sizes. Graphs in the same set have the same number of nodes. All the graphs are fully
connected which means for each pair of vertices, there is an edge connecting them. Since the graphs are fully
connected, the number of Shortest Paths (SP) equals to the number of edges. Each dataset has 256 graphs. The
9 datasets contain graphs with 10, 15, 20, 25, 30, 35, 40, 45, and 50 nodes. The largest number of nodes we use
is 50, this is because the average number of nodes in the real scientific datasets we are going to test is less than
50. However, we are able to process large graph with thousands of nodes, as long as it can fit into GPU memory.
If the graph size goes beyond the GPU memory capability, we can still cut a graph into multiple chunks and
process them chunk by chunk. However, in this paper we do not present results on very large graphs.

We first evaluated the naive sequential implementation of the shortest path graph kernel and the FCSP on
the CPU. Then we evaluated our two different OpenMP implementations and our four different GPU imple-
mentations on the synthetic datasets. Table 2 shows statistics for all 9 datasets. In order to test the performance



of our Hybrid implementation, we create another dataset with mixed sized graphs. In the mixed dataset, we
create 180 10-nodes graphs and 76 50-nodes graphs. Hence the comparison between 10-nodes graphs can be
handled by OpenMP In, the comparison between 10-nodes graphs and 50-nodes graphs, and the comparison
between 50-nodes graphs can be handled by GPU 1D overlap. We pick the 180:50 ratio because the number of
graphs assigned to CPU would roughly equal to the number of graphs assigned to GPU in this case.

Table 2. Statistics about the number of nodes and edges for synthetic datasets.

Dataset Avg. Nodes Avg. Edges Avg. SP

10-nodes 10 90 90
15-nodes 15 210 210
20-nodes 20 380 380
25-nodes 25 600 600
30-nodes 30 870 870
35-nodes 35 1190 1190
40-nodes 40 1560 1560
45-nodes 45 1980 1980
50-nodes 50 2450 2450

Results Table 3 shows the total running time in seconds of the naive implementation and the FCSP on 9
synthetic datasets. Thanks to the branch divergence removal, redundant computation elimination, and sequential
memory access, our sequential FCSP algorithm running on a CPU is able to achieve a 76X speedup over the
naive sequential SPGK algorithm running on the same CPU.

Table 3. Speedup of FCSP over naive SPGK on CPU

Dataset SPGK time(sec) FCSP time(sec) Speedup

10-nodes 127.99 2.35 54.56
15-nodes 695.24 11.69 59.46
20-nodes 2275.60 37.16 61.25
25-nodes 5668.74 91.42 62.00
30-nodes 11990.24 190.82 62.83
35-nodes 26220.74 355.50 73.76
40-nodes 45850.24 609.67 75.21
45-nodes 74817.26 983.35 76.08
50-nodes 115728.37 1513.69 76.45

After comparing our FCSP with the naive implementation, we assess six different FCSP parallelizations on
CPU and GPU. For GPU 1D and GPU 2D, we measured the running times spent on the three GPU kernels
and reduction memory copy. The time breakdown is showing in Fig. 2. As the graph size increases the ratio
of WalkKernel is getting bigger and bigger, the percentages for V ertexKernel and memory copy decreases
in both GPU 1D and GPU 2D. The percentage for Reduction goes up in GPU 2D, this is because the total
number of kwalk values to be summed increases exponentially (n2) as the graph size increases. However, in
GPU 1D, the increase is linear. The percentage for memory copy vary from 6% to 50% of the total running
time in different datasets. So it is necessary to hide this cost.

The speedup of all parallelizations over sequential FCSP are shown in Figure 3. The x-axis shows the exact
number of nodes in each graph in the corresponding dataset while the y-axis shows the speedup. As you can see,
OpenMP Out’s performance is stable reaching almost 8X speedup on average. This is reasonable because there
are sixteen OpenMP threads running in parallel in a shared memory system. Even FCSP is optimized, it is still
memory bandwidth bounded which prevents it from 16x speedup. In OpenMP In method, the overhead for

OpenMP initialization occurs once for one pair of graphs. So the initialization happens n(n−1)
2 times given n input

graphs. This is the main reason why OpenMP In performs worse than OpenMP Out especially when the graph
size is small. For the GPU implementations, the overlapped implementations are fast than the non-overlapped
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Fig. 2. Time breakdown for the GPU 1D and GPU 2D implementation on the nine datasets. (a) shows the running
times in percentages for the V ertexKernel, WalkKernel, Reduction, and memory copy for GPU 1D on nine synthetic
datasets, and (b) shows the running times in percentages for the GPU 2D.

implementations. It proves that hiding memory copy cost by overlapping communication with computation can
help reducing total running time. The GPU 1D overlap performs best in four GPU parallelization methods on
almost all datasets except the first one. Also, GPU 1D overlap starts to outperform OpenMP implementations
when the graph sizes increases to 35. It reaches a speedup of 18X on the largest dataset.

Table 4. Different Implementation Running Time(seconds) on the Mixed Dataset

OpenMP In OpenMP Out GPU 1D GPU 2D GPU 1D overlap GPU 2D overlap Hybrid

24.446 20.349 22.137 32.252 19.751 29.336 19.042

To test the performance of our Hybrid implementation, one additional dataset was created. In this dataset,
only two sizes of graphs were included: five node graphs and fifty node graphs. Thus, there is a clear boundary
we can set in our Hybrid implementation for choosing which algorithm to use. Our Hybrid algorithm uses
OpenMP In when graph similarities of five nodes are calculated. It then switches to the GPU 1D overlap
implementation when similarities of large graphs are calculated. Table 4 shows the running time in seconds of
our different implementations on the mixed dataset. As can be seen, Hybrid performs the best which fits our
expectation.

6.2 Results on Scientific Datasets

Datasets We also carried out an experiment with real-world scientific datasets from the bioinformatics domain,
with graphs that contain discrete labels at the nodes. These datasets were used in prior work to highlight the
effectiveness and efficiency of shortest path graph kernels [9]. The datasets are described as follows: (a) MUTAG
contains mutagenic aromatic and heteroaromatic nitro compounds [17]; (b) ENZYMES is a dataset of protein
tertiary structures of enzymes from the Brenda database [18]; (c) NCI1 and NCI109 are two datasets of chemical
compounds screened for activity against non-small cell lung cancer and ovarian cancer cell lines, respectively [19].
Detailed statistics about these datasets are shown in Table 5.

Results In this experiment, we used each of the four scientific datasets as input to our two OpenMP implemen-
tations, four GPU implementations, and one hybrid implementation. We show the time breakdown for GPU 1D
on four scientific datasets in Fig. 4. It shows that the time spent on memory copy takes up to 31% in MUTAG
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Fig. 3. Speedup over sequential FCSP on 9 synthetic homogeneous datasets

Table 5. Detailed statistics about the number of nodes and edges for the four scientific datasets.

Dataset Num. of Graphs Avg. Nodes Avg. Edges Min. SP Max. SP Avg. SP

MUTAG 188 17 39 90 756 324
ENZYMES 600 32 124 2 15500 1215

NCI1 4110 29 64 6 11130 1005
NCI109 4127 29 64 12 11130 995

which has the smallest average number of SP, and 17% in ENZYMES which has the largest average number
of SP. We use the performance of OpenMP In as a baseline for comparison. The results from all the other
implementations are shown in Table 6. As you can notice, the overlapped GPU implementations outperform
the non-overlapped methods in all four datasets. In the first dataset MUTAG, the OpenMP Out performs the
best. This is because the dataset is really small. It only has 324 shortest paths in average. The computation
power of GPU cannot be fully utilized in this dataset. As the result, all GPU implementations including Hybrid
perform not so well. In the other three datasets, Hybrid always performs the best. We also notice that Hybrid
achieves its maximum speedup for ENZYMES, which is the dataset with the largest average number of nodes
and edges.

Table 6. Speedup over OpenMP In on four scientific datasets

Dataset OpenMP Out GPU 1D GPU 2D GPU 1D overlap GPU 2D overlap Hybrid

MUTAG 1.33 0.28 0.21 0.33 0.38 0.96
ENZYMES 1.05 1.73 0.78 1.89 0.94 1.92

NCI1 1.13 1.45 0.73 1.66 0.90 1.78
NCI109 1.11 1.38 0.69 1.58 0.87 1.70

7 Related Work

While the running time of the shortest path graph kernel is an obvious improvement over other graph kernels,
it is still expensive for large graphs or datasets. No other related work presents a GPU implementation of the
shortest path graph kernel. However, the transformation of a graph into a shortest path graph on the GPU,
in particular the Floyd-Warshall algorithm, has been done in the past. Harish and Narayanan [20] presented a
simple GPU implementation. They assign each atomic task to a single GPU thread. Their approach is limited
by the time spent on accessing global memory. Katz and Kider [21] improved Harish’s work by using a blocked
approach. In their implementation, shared memory is used, which resulted in a 5x speedup over Harish’s work.
Lund and Smith [22] applied a multi-stage approach, where they can remove data dependencies and make a more
efficient use of registers and shared memory. In the end, they achieved a 5x speedup over Katz’s implementation.
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In all our GPU implementations, the application of the Floyd-Warshall algorithm is done on the CPU when
the graphs are read as input. This is because the Floyd-Warshall algorithm only takes a small amount of time
which is less than 1% of the total running time in all our experiments. Certainly, our approaches could be
improved by using a GPU implementation for the Floyd-Warshall algorithm [20] [21] [22]. However, in the
context of this paper, we focus on accelerating only the shortest path graph kernel, so this is out of the scope
of the current paper.

8 Conclusion

In this paper, we are targeting fast and efficient parallelization of the shortest path graph kernel on the CPU and
GPU. We proposed the Fast Computation of Shortest Path graph kernel which is able to achieve 76x speedup
over a naive implementation of the SPGK if we run both of them sequentially. We parallelized FCSP on the
CPU using two OpenMP methods, and four OpenCL implementations on the GPU. We also come up with a
hybrid scheme to combine the advantage of CPU and GPU parallelization. Our experiments show that the best
implementation of FCSP is dependent on the size of the graphs being processed. For small graphs, the OpenMP
implementations on the CPU perform better. GPU implementations perform better if the graphs are large.
Therefore a hybrid algorithm that chooses the best algorithm per graph size works best in almost all data sets.

In the future, we plan to extend this work by implementing a multi-GPU version of our algorithm. This
will allow us to process larger sets of graphs faster. We will also look into accelerating other graph kernels and
handling large graphs that cannot currently fit on the GPU memory.
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